История медицины

Bulletin of Semashko National Research Institute of Public Health. 2023. No. 2. History of medicine

Научная статья УДК 614.888.5, 616-083.98 doi:10.25742/NRIPH.2023.02.018

Первая мировая война, как новый этап в истории переливания крови

-122 -

Мария Сергеевна Сергеева

Первый московский государственный медицинский университет им. И. М. Сеченова (Сеченовский Университет), Москва, Российская Федерация

sergeeva_m_s@staff.sechenov.ru, http://orcid.org/0000-0002-2027-4020

Аннотация. Несмотря на популярность, которую идея переливания крови приобрела в 1860-1870 гг., в число средств неотложной помощи при острой кровопотере эта процедура вошла только в годы Первой мировой войны. Неуверенность врачей в результате переливания была следствием дефицита научных знаний о биохимических и физиологических свойствах крови. Основные проблемы клинического применения данной методики были связаны со свертыванием крови и непредсказуемостью результата. Распространение в 1870-х гг. ксенотрансфузии обратило внимание врачей на наличие реакций межвидовой и групповой несовместимости крови. Развитие представлений о механизме геморрагического шока в 1880-х гг. стимулировало изучение солевых растворов в качестве безопасной и эффективной альтернативы крови. Обоснование ферментативной природы свертывания крови стимулировало направленный поиск химических консерваторов крови. Таким образом к началу Первой мировой войны существовало два научнообоснованных способа борьбы с массовой кровопотерей: переливание консервированной крови и вливание солевых растворов. Однако первый опыт массового применения солевых растворов на поле боя подтвердил преимущества гемотрансфузии при условии соблюдения групповой совместимости крови.

Ключевые слова: переливание крови, агглютинация, консервация, цитрат натрия, физиологический раствор.

Для цитирования: Сергеева М. С. Первая мировая война, как новый этап в истории переливания крови // Бюллетень Национального научно-исследовательского института общественного здоровья имени Н. А. Семашко. 2023. № 2. С. 122—126. doi:10.25742/NRIPH.2023.02.018.

Original article

The First World War as a new stage in the history of blood transfusion

Marya S. Sergeeva

I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation sergeeva_m_s@staff.sechenov.ru, http://orcid.org/0000-0002-2027-4020

Annotation. Despite the popularity that the idea of blood transfusion gained in the 1860s and 1870s, this procedure entered the list of emergency care for acute blood loss only during the First World War. The uncertainty of doctors as a result of transfusion was a consequence of the lack of scientific knowledge about the biochemical and physiological properties of blood. The main problems in the clinical application of this technique were associated with blood clotting and the unpredictability of the result. The spread of xenotransfusion in the 1870s drew the attention of doctors to the existence of interspecies and group incompatibility of blood. The development of the ideas about the mechanism of hemorrhage in the 1880s stimulated the study of saline solutions as a safe and effective alternative to blood. The discovery of the enzymatic nature of blood coagulation stimulated a directed search for chemical blood preservatives. Thus, by the beginning of the First World War, there were two scientifically based methods of dealing with massive blood loss: transfusion of canned blood and infusion of saline solutions. However, the first experience of the infusion of saline solutions on the battlefield confirmed the benefits of blood transfusion, especially with the compatibility of the blood group.

Keywords: blood transfusion, agglutination, preservation, sodium citrate, saline.

For citation: Sergeeva M. S. The First World War as a new stage in the history of blood transfusion. Bulletin of Semashko National Research Institute of Public Health. 2023;(2):122–126. (In Russ.). doi:10.25742/NRIPH.2023.02.018.

В 1860—1870 гг. многие сторонники переливания крови мечтали, что в ближайшее время любой врач, фельдшер или санитар сможет с легкостью выполнить на поле боя каждому умирающему от кровопотери солдату «спасительное переливание» крови 1, 13]. Однако до Первой мировой войны этим мечтам не было суждено сбыться.

Основными факторами, препятствовавшими распространению гемотрансфузии в XIX в. были свертывание крови и непредсказуемость результа-

тов переливания, преодолеть которые механическим путем (изменяя конструкцию приборов, совершенствуя технику вливания, удаляя фибрин из донорской крови) не удавалось. Широкий общественный резонанс, вызванный в 1860-х гг. теорией Дарвина о родстве животных и человека, спровоцировал увлечение клиницистов ксенотрансфузией (введение крови животных человеку). Громкие сообщения практикующих врачей о достигнутых успехах, противоречившие выводам физиологов,

стали первым информационным поводом, стимулировавшим экспериментальное изучение не только состава и функций компонентов крови, но и патологических процессов, происходящих в ней в процессе переливания.

Независимые исследования, проведенные в 1874—1876 гг. в Европе и Америке, привели ученых к схожим выводам. Одни в экспериментах на животных (Л.Ландуа, Я. В. Мюллер), другие — на людях (Э.Понфик, Г.Грэдл) доказали, что главный побочный эффект ксенотрансфузии «кровавая моча» являлся результатом агглютинации и лизиса эритроцитов доноров (овец) в крови реципиентов (собак и человека) в процессе переливания [2, 212]. Используя микроскопию и спектроскопию, немецкий патолог Эмиль Понфик (1844—1913) установил, что в течении 14-82 минут с начала переливания гемоглобин из разрушенных эритроцитов животных появляется в моче, следовательно, введенная в организм человека животная кровь теряет способность переносить кислород и оказывать приписываемый ей «живительный эффект». Физиолог Леонард Ландуа (1837—1905) не только подтвердил заключения Понфика, собрав в опытах in vitro статистические данные о лизисе эритроцитов животных в сыворотке человека, но и впервые объяснил это явление наличием в крови естественных антител, гетерогемолизинов или гетероагглютининов [2, 212; 3, 82]. В 1898 г. бельгийский иммунолог Жюль Борде (1870— 1961) доказал, что наблюдаемые при ксенотрансфузии явления агглютинации и лизиса чужеродных эритроцитов являются естественными иммунологическими реакциями организма. Он описал увеличение титра данных антител в процессе иммунизации животных чужеродными кровяными клетками [4]. В 1900 г. Пауль Эрлих (1854—1915) и Юлиус Моргенрот (1871—1924) обнаружили специфические гемолизины в нормальных сыворотках крови животных 5, 427]. В том же году Карл Ландштейнер (1868—1943) обнаружил клеточные различия у особей одного и того же вида, показав, что реакции агглютинации возможны между сывороткой одних людей и эритроцитами других. Спустя два года Алфред Декастелло и Адриано Стурли выявили еще одну группу крови, в сыворотке которой отсутствовали изоагглютинины, а эритроциты агглютинировались сыворотками выявленных Ландштейнером групп крови (А, В и С) [6, 85]. В 1907 г. американский врач Рубен Оттенберг (1882—1959) впервые предложил проводить тесты на совместимость перед переливанием, доказав, что посттрансфузионный синдром (лихорадка, темная моча, озноб, общая гиперемия, болью в груди или прекордиальный области, обморок), связываемый ранее с образованием тромбов и закупоркой сосудов жизненно-важных органов были результатом несовместимости разных групп крови [7]

Однако сами по себе эти открытия еще не могли оказать принципиального значения на развитие практики гемотрансфузии на рубеже XIX—XX вв. Историческая речь Эрнста фон Бергманна (1836—1907), осудившего в 1883 г. переливание крови в как

опасный метод со спорной клинической эффективностью, обратила внимание врачей на поиск альтернативных и безопасных жидкостей для инфузий [8, 25]. Главной причиной смерти пациентов при переливании человеческой крови практикующие врачи по-прежнему видели в образовании тромбов и закупорке сосудов жизненно-важных органов. В связи с чем другим направлением исследований в конце XIX в. стал поиск способов преодоления свертывания крови [9, 137]. Во многом эти процессы были взаимосвязаны, поскольку основывались на изучении химических свойств крови и функций входящих в нее элементов.

Уже в 1870-х гг. физиологи обратили внимание, что содержащиеся в крови соединения способны влиять на состояние сердечно-сосудистой системы. Ландуа обнаружил, что лизис эритроцитов в процессе ксенотрансфузии приводит к увеличению концентрации калия в крови, который в свою очередь вызывает нерегулярные волнообразные сокращения сердца (фибрилляции), объясняющие другие распространенные последствия ксенотрансфузии — отдышку, онемение нижних конечностей, замедление пульса. Таким образом, Ландау предположил, что при большинстве гетерологичных переливаний смерть наступает в результате гиперкалиемии [3, 84]. Пытаясь объяснить феномен свертывания крови российский физиолог Александр Александрович Шмидт (1831—1894) обнаружил, что нейтральные соли щелочных металлов, особенно карбонат соды, оказывают тормозящее влияние на коагуляцию волокнистого вещества крови [10, 93]. Предложенная им ферментативная теория свертывания крови позволила начать сознательный поиск химических стабилизаторов крови [6, 85; 11, 173].

Следует отметить, что на протяжении второй половины XX в. в экспериментальной физиологии в качестве антикоагулянтов эмпирически применялось более 30 различных химических веществ, таких как бикарбонат и фосфат натрия, щавелевая, лимонная, винная, яблочная кислоты и даже пептонсоляный раствор [3, 86]. Однако их действие еще не имело научного обоснования в свете целостного представления о механизме свертывания крови. В 1867 г. русский врач Вильгельм Михайлович Раутенберг (1840—1879) обнаружил, что прибавление малых количеств углекислого натрия к цельной крови способно в течении 10 минут сохранять ее в жидком состоянии, не лишая «необходимых для переливания» свойств [12]. В следующем году английский акушер Джон Брэкстон Хикс (1823—1897) пытался преодолеть свертывание добавлением к крови донора раствора фосфата соды, однако все его пациентки, не смотря на первоначально хороший результат, вскоре умерли от шока [3, 86. В 1875 г. шведский физиолог Олоф Хаммарштен (1841— 1932) показал, что хлорид кальция также замедляет образование фибрина. Изучая роль кальция в процессе коагуляции французский физиолог Николя Морис Артюс (1862—1945) совместно с Калистом Паже в 1890 г. обнаружил антикоагуляционный эффект оксалатов и цитратов, образующих устойчивые комплексы с кальцием. Добавление этих солей позволяло сохранять кровь в жидком состоянии в течение нескольких недель при температуре 3°C [11, 173; 13, 55]. В 1894 г. английский патологоанатом Алмрот Э. Райт (1861—1947) в опытах на животных in vivo доказал «терапевтическую ценность» и безопасность цитратов (лимоннокислого натрия) в сравнении с ядовитыми оксалатами [14, 58; 15, 375]. Таким образом, к концу XIX в. были накоплены достаточные экспериментальные данные о безопасных методах химической консервации крови. Особенности цитрата натрия в качестве антикоагулянта, условия дозирования и выведения, его фармакологическое действие и возможные побочные эффекты, также как условия хранения цитратной крови стали предметом многочисленных физиологических исследований в первых десятилетиях XX в. Однако полученных результатов было еще недостаточно для возвращения в медицинскую практику метода переливания цельной человеческой крови.

Новая интерпретация процесса дыхания как серии окислительных процессов в тканях, успешно доказанная экспериментами Эдуарда Пфлюгера в 1870-х гг., лишила кровь ее активного «жизненного начала». В 1880-х гг. исследования Уильяма Хантера окончательно опровергли наличие у нее питательной функции. В результате чего, концепция «животворящей крови» сменилась новым представлением о ней как механической транспортной системе, доставляющей к более твердым тканям тела и отводящей от них растворенные вещества [16, 194]. Подобное представление позволило провести аналогии между кровью и солевыми растворами, в связи с чем, широкую популярность в качестве заменителя крови при лечении острых анемий и шоковых состояний приобрел доступный и безопасный физиологический раствор [9, 137]. Преимущества солевых вливаний подтверждались и новым объяснением главной причины смерти при массовой кровопотере. В 1880-х гг. ее стали связывать не столько с уменьшением количества кровяных телец, сколько с уменьшением общего объема циркулирующей кро-

Значительную роль в популярности физиологического раствора сыграли выводы российского ученого Дмитрия Оскаровича Отта (1855—1929). Проведенное им сравнение эффекта, оказываемого на кровь введением физиологического раствора, цельной или дефибрированной крови животных одного или разных видов, показало, что введение солевого раствора является даже более безопасным, чем внутривидовая трансфузия [9, 137]. «Полное восстановление числа кровяных шариков до первоначально бывшей нормы, — писал Отт, — происходит при трансфузии крови гораздо медленнее, чем при вливании соляного раствора или кровяной сыворотки» [17, 91]. Американский хирург Уильям Т. Булл (1849—1909) в качестве теоретического обоснования собственного клинического опыта использования солевых растворов приводит вывод Отта о том, что «опасность потери крови, даже до двух третей всего ее объема, заключается в нарушении соотношения между калибром сосудов и количеством содержащейся в них крови, а не в уменьшении количества эритроцитов» [18, 6]. При этом вязкости используемой для переливания жидкости еще не было уделено должного внимания. Анализируя действие разных по составу инфузионных растворов Булл писал: «опасность касается объема вводимых жидкостей, причем безразлично, являются ли они белковыми, содержащими кровяные тельца или нет» [18, 6. Экспериментируя с влиянием солей на работу сердца британский фармаколог Сидней Рингер (1835—1910) в 1880-х гг. обнаружил, что хлориды натрия и калия являются антагонистами в своем воздействии на сердце. Если первый нарушал нормальный ритм сердца, то второй — не только противодействовал этому эффекту, но, наоборот, стимулировал работу изолированного сердца [16, 194]. Стремясь приблизиться к нормальным функциям самой крови Рингер комбинировал их составы, благодаря чему в медицинскую практику вошли многокомпонентные солевые и соляно-спиртовые растворы содержащие хлориды натрия и калия; сернокислой соды, карбоната и фосфата соды с добавлением спирта; поваренной соли, карбоната соды и содового ликера и другие [16, 200; 18, 8]. Однако дальнейшее изучение фармакологического действия солевых растворов свидетельствовало об опасности их массового применения. В 1890-х гг. работы британского Физиолога Эрнеста Г. Старлинга (1866—1927) показали, что из-за отсутствия осмотического давания, введенный внутривенно солевой раствор будет быстро выводиться почками, что может спровоцировать еще более резкое снижение давления в сосудах. Открытие обратно пропорциональной зависимости скорости движения крови по сосудам от ее вязкости подтверждало выводы Старлинга, поскольку, снижая вязкость крови, инфузии солевых растворов уменьшали и «движущее давление крови» [16, 201].

К началу Первой мировой войны существовало два научно обоснованных и подтвержденных экспериментальными исследованиями способа борьбы с массовой кровопотерей: переливание консервированной крови и вливание солевых растворов. Убедительные доказательства неэффективности солевых инфузий были получены в битве при Сомме летом и осенью 1916 г., в ходе которой погибло более 420 000 человек. Анализируя потери, британский военный хирург Гордон Уотсон констатировал, что массовое использование инфузии физиологического раствора при гиповолемическом шоке продемонстрировало его временный эффект, за которым следовал еще более сильный коллапс и смерть пациентов [13, 30]. Уолтер Маклин (1885—1917), опираясь на особенности раненых на передовых медицинских постах (большой процент травм живота и пациентов в состоянии шока), утверждал, что скоротечное действие солевых растворов не позволит транспортировать их в тыл. В то же время проведение переливания крови и неотложных хирургических операций в условиях передовых медицинских пунктов позволит сократить численность безнадежных случаев [13, 58]. Александр Примроуз (1861—1944), проанализировав опубликованные данные о выполненных в ходе войны переливаниях, пришел к выводу, что трансфузии цитратной крови оказывали значительно лучший, чем солевые растворы эффект [13, 57]. Однако длительное хранение такой крови приводило к снижению ее эффективности, не зависящему от коагуляции. Пейтон Роус (1879—1970) и Дж. Р. Тернер доказали, что подобный эффект на кровь оказывает отсутствие питательных веществ. В связи с чем они предлагали добавлять в цитратный раствор глюкозу, чтобы продлить жизнедеятельность клеток крови [19]. Освальд Хоуп Робертсон (1886—1966) в битве при Камбре в 1917 г. впервые применил для транспортировки и хранения консервированной крови созданный им рефрижераторный контейнер со льдом. В апреле 1918 г. он описал собственный метод переливания крови, в основу которого было положено использование в качестве консерванта раствора Рауса-Тернера (5,4% декстрозы и 3,8% цитрата натрия) и обязательное определение совместимости групп крови доноров и реципиентов. Кроме того, Робертсон утверждал, что в экстренных ситуациях, когда нет возможности провести тест на совместимость следует использовать только IV универсальную донорскую группу крови [20].

Таким образом, мечтам трансфузиологов XIX в. о превращении переливания крови в основной инструмент неотложной медицинской помощи было суждено сбыться только в годы Первой мировой войны, когда с одной стороны, огромное количество пациентов в состоянии геморрагического шока нуждалось в экстренной помощи на поле боя, с другой — были накоплены точные научные данные о химическом составе крови, иммунологической совместимости групп крови и патологическом механизме геморрагического шока, превратившие переливание крови в научно обоснованный метод лечения.

СПИСОК ИСТОЧНИКОВ

- 1. Gesellius F. Zur Tierblut-Transfusion beim Menschen. Saint Petersburg: E. Hoppe, 1874.
- 2. Roux FA, Saï P, Deschamps J-Y. Xenotransfusions, past and present. Xenotransplantation. 2007;14(3):208-216. doi: 10.1111 j.1399-3089.2007.00404.x
- 3. Maluf NSR. History of Blood Transfusion. Journal of the History of Medicine and Allied Sciences. 1954;IX(1):59-107. doi: 10.1093_jhmas_ix.1.59
- 4. Bordet J. Sur le mode d'action des autitoxines sur les toxines. Annales de l'Institut Pasteur. 1903;17:161-186.
- 5. Zimmerman LM, Howell KM. History of blood transfusion. Annals of Medical History. 1932;4(5):415-433.
- 6. Йванов Д. О., Петренко Ю. В. Этапы истории переливания крови в акушерстве и педиатрии. Проблемы женского здоровья. 2012;7(2):79-87.
- 7. Epstein AA, Ottenberg R. «A simple method of performing serum reactions». Proc NY Pathol. Soc. 1908;8:117-123.
- 8. Von Bergmann E. Die Schicksale der Transfusion im Letzten Decennium. Berlin: V. A. Hirschwald, 1883.
- 9. Сергеева М. С., Панова Е. Л. Переливание крови раненым перспективный метод военно-полевой хирургии или утопия середины 1870-х годов? История медицины. 2021;7(2):133— 139. doi: 10.17720/2409-5583.t7.2.2021.02b

- 10. Schmidt A. Die Lehre von den fermentativen Gerinmunpsarscheinungen in den eiweissartigen thierischen Körperflüssigkeiten. Dorpat: Verlag von C. Mattiesen; 1876.
- 11. Чурилов Л. П., Утехин В. И. Человек и феномен: к 150-летию со дня рождения Николя-Мориса Артюса. Вестник Санкт-Петербургского университета. Медицина. 2012;3:171—186.
- 12. Sergeeva M., Panova E. The studies of blood transfusion and the attempts of its implementation into medical practice in 1800-1875: the fate of J.-A. Roussel's device in Russia. *Medicina Historica*. 2020;4(2):e2020003. URL: https://mattioli1885journals. com/index.php/MedHistor/article/view/9319
- 13. García GO. La Primera Guerra Mundial: el amanecer de las transfusiones sanguíneas. Sanid. mil. 2019;75(1):52—62. doi: 10.4321/ S1887-85712019000100009
- 14. Wright AE. Remarks on methods of increasing and iminishing the coagulability of the blood, with special reference to their therapeutic employment. British Medical Journal. 1894;(2):57-61.
- 15. Learoyd P. The history of blood transfusion prior to the 20th century-part 2. Transfusion Medicine. 2012;22(6):372-376. doi: 10.1111j.1365—3148.2012.01189.x
- 16. Pelis K. Blood Standards and Failed Fluids: Clinic, Lab, and Transfusion Solutions in London, 1868-1916. History of Science. 2001;39(2):185—213. doi: 10.1177/007327530103900203
- 17. Отт Д. О. О влиянии на обескровленный организм вливания раствора поваренной соли и сравнение его действия с другими употребляемыми для трансфузии жидкостями. Спб.: Типогра-. фия Я. Трей, 1884.
- 18. Bull WT. On the intravenous injection of saline as a substitute for the transfusion of blood. Medical Record. 1884;25:6-8.
- Rous P, Turner JR. «The preservation of living red blood cells in vitro». J Exp Med, 1916;23:219-248.
- 20. Robertson OH. «A method of citrated blood transfusion». BMJ. 1918;1(2991):477-479.

REFERENCES

- 1. Gesellius F. Zur Tierblut-Transfusion beim Menschen. Saint Petersburg: E. Hoppe, 1874.
- 2. Roux FA, Saï P, Deschamps J-Y. Xenotransfusions, past and present. Xenotransplantation. 2007;14(3):208—216. doi: 10.1111 j.1399-3089.2007.00404.x
- 3. Maluf NSR. History of Blood Transfusion. Journal of the History of Medicine and Allied Sciences. 1954;IX(1):59—107. doi: 10.1093_jhmas_ix.1.59
- 4. Bordet J. Sur le mode d'action des autitoxines sur les toxines. An-
- nales de l'Institut Pasteur. 1903;17:161—186. 5. Zimmerman LM, Howell KM. History of blood transfusion. *Annals* of Medical History. 1932;4(5):415-433.
- 6. Ivanov D. O., Petrenko Yu. V. Stages of the history of blood transfusion in obstetrics and pediatrics. Problems of women health. [Problemy zhenskogo zdorov'ya]. 2012;7(2):79—87 (in Russian).
- 7. Epstein AA, Ottenberg R. «A simple method of performing serum reactions». Proc NY Pathol. Soc. 1908;8:117—123.
- 8. Von Bergmann E. Die Schicksale der Transfusion im Letzten Decennium. Berlin: V. A. Hirschwald, 1883.
- 9. Sergeeva MS, Panova EL. Blood transfusions for the wounded: promising method of battlefield surgery or utopia of the mid-1870s? *History of Medicine*. 2021;7(2):133—139. (in Russian). doi: 10.17720/2409-5834.v7.2.2021.02b
- 10. Schmidt A. Die Lehre von den fermentativen Gerinmunpsarscheinungen in den eiweissartigen thierischen Körperflüssigkeiten. Dorpat: Verlag von C. Mattiesen; 1876.
- 11. Churilov L.P., Utekhin V. I. Man and phenomenon: on 150th birthday of Nicolas-Maurice Arthus. Vestnik of Saint Petersburg University. Medicine. [Vestnik Sankt-Peterburgskogo universiteta. Meditsina]. 2012;3:171—186. (in Russian).
- 12. Sergeeva M., Panova E. The studies of blood transfusion and the attempts of its implementation into medical practice in 1800-1875: the fate of J.-A. Roussel's device in Russia. Medicina Historica. 2020;4(2):e2020003. URL: https://mattioli1885journals. com/ index.php/MedHistor/article/view/9319
- 13. García GO. La Primera Guerra Mundial: el amanecer de las transfusiones sanguíneas. Sanid. mil. 2019;75(1):52—62. doi: 10.4321/ S1887-85712019000100009
- 14. Wright AE. Remarks on methods of increasing and iminishing the coagulability of the blood, with special reference to their therapeutic employment. British Medical Journal. 1894;(2):57—61.
- 15. Learoyd P. The history of blood transfusion prior to the 20th century-part 2. *Transfusion Medicine*. 2012;22(6):372—376. doi: 10.1111j.1365—3148.2012.01189.x

- 16. Pelis K. Blood Standards and Failed Fluids: Clinic, Lab, and Transfusion Solutions in London, 1868—1916. *History of Science*. 2001;39(2):185—213. doi: 10.1177/007327530103900203
- 17. Ott D. O. O vliyanii na obeskrovlennyy organizm vlivaniya rastvora povarennoy soli i sravnenie ego deystviya s drugimi upotreblyaemymi dlya transfuzii zhidkostyami [About the effect of the infusion of sodium chloride solution on the bloodless organism and comparison of its action with other fluids used for
- transfusion]. Saint Petersburg: Tipografiya Ya. Trey, 1884. (in Russian).
- 18. Bull WT. On the intravenous injection of saline as a substitute for the transfusion of blood. *Medical Record*. 1884;25:6—8.
- 19. Rous P, Turner JR. «The preservation of living red blood cells in vitro». *J Exp Med*, 1916;23:219—248.
- 20. Robertson OH. «A method of citrated blood transfusion». *BMJ*. 1918;1(2991):477—479.

Автор заявляет об отсутствии конфликта интересов.

The author declares no conflicts of interests.

Статья поступила в редакцию 30.09.2022; одобрена после рецензирования 31.01.2023; принята к публикации 17.05.2023. The article was submitted 30.09.2022; approved after reviewing 31.01.2023; accepted for publication 17.05.2023.